The incompressible Navier-Stokes equations on non-compact manifolds

نویسندگان

  • Vittoria Pierfelice
  • V. PIERFELICE
چکیده

We shall prove dispersive and smoothing estimates for Bochner type laplacians on some non-compact Riemannian manifolds with negative Ricci curvature, in particular on hyperbolic spaces. These estimates will be used to prove Fujita-Kato type theorems for the incompressible Navier-Stokes equations. We shall also discuss the uniqueness of Leray weak solutions in the two dimensional case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of the Navier-stokes Equations with the Kinematic and Navier Boundary Conditions

Abstract. We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a domain in R with compact and smooth boundary, subject to the kinematic and Navier boundary conditions. We first reformulate the Navier boundary condition in terms of the vorticity, which is motivated by the Hodge theory on manifolds with boundary from the viewpoint of differential...

متن کامل

Fourth Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers

A new fourth order compact formulation for the steady 2-D incompressible Navier-Stokes equations is presented. The formulation is in the same form of the Navier-Stokes equations such that any numerical method that solve the Navier-Stokes equations can easily be applied to this fourth order compact formulation. In particular in this work the formulation is solved with an efficient numerical meth...

متن کامل

Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations

This article presents a time-accurate numerical method using high-order accurate compact finite difference scheme for the incompressible Navier–Stokes equations. The method relies on the artificial compressibility formulation, which endows the governing equations a hyperbolic–parabolic nature. The convective terms are discretized with a third-order upwind compact scheme based on flux-difference...

متن کامل

Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations

This article presents a family of very high-order non-uniform grid compact finite difference schemes with spatial orders of accuracy ranging from 4th to 20th for the incompressible Navier–Stokes equations. The high-order compact schemes on non-uniform grids developed in Shukla and Zhong [R.K. Shukla, X. Zhong, Derivation of high-order compact finite difference schemes for non-uniform grid using...

متن کامل

Higher-order surface FEM for incompressible Navier-Stokes flows on manifolds

Stationary and instationary Stokes and Navier-Stokes flows are considered on two-dimensional manifolds, i.e., on curved surfaces in three dimensions. The higherorder surface FEM is used for the approximation of the geometry, velocities, pressure, and Lagrange multiplier to enforce tangential velocities. Individual element orders are employed for these various fields. Stream-line upwind stabiliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017